BE Semester- III (Instrumentation and Control) Question Bank

(IC 303 ELECTRICAL ENGINEERING)

All questions carry equal marks (10 marks)

Q.1	Explain various equipments used in transformer substations										
Q.2	A separately excited DC generator gave the following data for open circuit characteristic at										
	1000 rpm.										
		Field	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	
		current A	0	0.2	0.4	0.0	0.8	1.0	1.2	1.4	
		Eg V	5	50	100	140	170	190	200	205	
	The armature resistance is 0.5 ohms. If the generator is now shunt connected and is driven										
	at 1100 rpm, for a total shunt field resistance of 180 ohms, calculate										
	(1) No load emf.										
	(2) The out put current and shunt field current for a terminal voltage of 190V.										
	(3) The maximum output current and corresponding terminal voltage.										
	(4) Steady state short circuit current:										
Q.3	A 10kW, 250V DC shunt motor has an armature resistance of 0.5 ohms and field resistance										
	of 200 ohms. At no load and rated voltage the speed is 1200 r.p.m and the armature current										
	is 3A. At full load and rated voltage the line current is 47A and because of armature										
	reaction the flux is 4% less than its no load value.										
	(a) What is the full load speed?										
	(b) What is the torque at full load?										
Q.4	A 60 kW, 250V DC shunt motor takes 16A when running light at 1440 r.p.m. The										
	resistance of the armature and field are 0.2 and 125 ohms respectively when hot.										
	(a) Estimate the efficiency of motor when taking 152 A.										
	(b) Also estimate efficiency if working as a generator and delivering a load current of 152A										
0.5											
Q.5	A 250 V DC series motor is taking 50A. Resistance of armature and series field winding is 0.2 above and 0.1 above respectively. Calculate (a) break weither (b) hash surf (b)										
	0.2 Online a	0.2 onnis and 0.1 onnis respectively. Calculate (a) brush voltage (b) back emi (c) power unstand in armsture (d) machanical neuron developed									
0.6	Discuss DC series motor characteristic in details										
0.0	Classify DC generators and derive an expression for induced <i>amf</i> with usual potations										
$\frac{Q.7}{0.8}$	State and explain various types of losses in case of DC generators										
0.9	Explain commutation process in details for DC generator										
0.10	Discuss working of three – point starter for DC shunt motor										
Q.11	Describe different methods of speed control for DC series motor.										
Q.12	Compare la	ap winding	and w	vave wi	nding ii	n details	s.				
Q.13	Explain arr	Explain armature reaction in DC generators.									
Q.14	Explain ba	ck emf and	l deriv	e torqu	e equat	ion for	DC mo	tor.			
Q.15	Discuss wo	orking princ	ciple a	nd con	struction	n of tra	nsforme	er in det	ails.		
Q.16	Explain op	en circuit a	nd sho	ort circu	uit tests	of trans	sformer	•			
Q.17	Draw and e	explain pha	sor di	agrams	for trar	nsforme	r under	(i) no-l	oad con	dition (ii) R-L load
	condition.										
Q.18	Describe v	oltage regu	lation	of sing	gle phas	e transf	former a	and deri	ve condi	ition for	maximum
	efficiency f	for the same	e.								
Q.19	Discuss wo	orking of au	itotran	sforme	r in det	ails.					

Q.20	Explain parallel operation of two single phase transformers with necessary conditions and diagrams									
0.21	Discuss applications of three-phase star-star, delta-delta, star-delta & delta-star									
C	transformers.									
Q.22	A 15 kVA, 2300/230V, 50Hz, single phase transformer gave following test results:									
	OC test Vo = 2300 V, Io = 0.21 A, Wo = 50 W									
	$\overline{SC \text{ test } Vsc} = 47V$, $Isc = 6A Wsc = 160W$.									
	(i) Find equivalent circuit referred to high voltage side.									
	(ii) Calculate full load voltage regulation at 0.8 p.f. lagging when the load voltage is									
	lead at 220V.									
	(iii) What is the efficiency at half the rated load at UPF?									
	(iv) Find maximum efficiency and corresponding output power.									
Q.23	In a 25 kVA, 2000/200V transformer, the iron & copper losses are 350 & 400 W									
	respectively. Calculate:									
	(a) Efficiency on UPF at (i) full load (ii) Half load									
0.24	(b) Determine load for maximum efficiency and the iron and copper loss at this stage.									
Q.24	20 KVA, 2000/200 V, single phase transformer has following parameters.:									
	I V winding $I I = 5$ onlines, $X I = 5.5$ onlines I V winding $r^2 = 0.05$ obms. $x^2 = 0.05$ obms.									
	EV which is $12 = 0.05$ of this, $x_2 = 0.05$ of this Find the voltage regulation at (i) 0.8 n f lagging (ii) LIPE (iii) 0.707 n f leading									
0.25	Explain construction and working principle of three phase induction motor									
0.25	Briefly discriminate between starting torque of slin-ring and squirrel cage induction motor									
Q .20	Derive condition for maximum starting torque of sup ring and squitter edge induction motor.									
	notations.									
Q.27	State various starting methods of three-phase induction motor. Explain									
Q.28	Explain methods of measurement of slip in three-phase induction.									
Q.29	Explain torque-slip characteristic of three-phase induction motor.									
Q.30	Describe three-phase induction motor as generalized transformer.									
Q.31	A 3000 V , 24 pole , 50Hz, Three phase star connected induction motor has slip ring rotor									
	of resistance 0.016 ohms and standstill reactance 0.265 ohms per phase full load torque is									
	obtained at speed of 247 rpm.									
	Calculate (a) the ratio of maximum full load torque (b) the speed at maximum torque.									
0.22	Neglect stator impedance.									
Q.32	A /46 kW, Inree phase, 50Hz, 16 pole induction motor has rotor impedance of $(0.02 + j)$									
	0.15) onms at standstill. Full load torque is obtained at 500 rpm. Calculate (a) speed at									
	haximum torque (b) the ratio of maximum to run load torque (c) the external resistance per									
0.33	Describe working of capacitor start and run induction motor									
$\begin{array}{c} Q.33 \\ 0.34 \end{array}$	Discuss working of shaded pole single phase induction motor									
0.35	Explain working of universal motor									
0.36	State different causes of low power factor and discuss disadvantages of low power factor in									
2.00	power system.									
Q.37	Explain schematic arrangement of thermal power station.									
Q.38	Explain schematic arrangement of hydro power station.									
Q.39	Explain choice of site for steam power station.									
Q.40	Describe wind mill power generation.									